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Abstract. In this paper we introduce a conic optimization formulation to solve constrained convex
programming, and propose a self-dual embedding model for solving the resulting conic optimization
problem. The primal and dual cones in this formulation are characterized by the original constraint
functions and their corresponding conjugate functions respectively. Hence they are completely
symmetric. This allows for a standard primal-dual path following approach for solving the embedded
problem. Moreover, there are two immediate logarithmic barrier functions for the primal and dual
cones. We show that these two logarithmic barrier functions are conjugate to each other. The explicit
form of the conjugate functions are in fact not required to be known in the algorithm. An advantage
of the new approach is that there is no need to assume an initial feasible solution to start with.
To guarantee the polynomiality of the path-following procedure, we may apply the self-concordant
barrier theory of Nesterov and Nemirovski. For this purpose, as one application, we prove that
the barrier functions constructed this way are indeed self-concordant when the original constraint
functions are convex and quadratic. We pose as an open question to find general conditions under
which the constructed barrier functions are self-concordant.

Mathematics Subject Classifications. 90C25, 90C51.

Key words. convex cones, convex programming, self-concordant barrier functions, self-dual
embedding.

1. Introduction

In this paper we propose to solve the constrained convex optimization problems
by means of conic self-dual embedding.
The original self-dual embedding method was proposed by Ye, Todd and

Mizuno [17] for linear programming. The advantage of this method is twofold.
First, it has a strong theoretical appeal, since it displays, and makes use of, the
symmetricity of the primal-dual relationship in linear programming. The merit
of the symmetric duality becomes explicit, and it is especially well suited for
treating infeasible or unbounded problems, as the Farkas type certificate is readily
available after solving the self-dual embedded model. Second, in combination
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of any efficient interior point implementation, the self-dual embedded model is
handy to use in practice. As a result, several successful software packages for
linear programming are based on this model.
The idea of self-dual embedding was extended to solve more general con-

strained convex optimization problems in two different ways. For conically con-
strained convex optimization, including semidefinite programming, Luo, Sturm
and Zhang [8] proposed a self-dual embedding model; for more details and an
overview, see Section 2. The software package of Jos Sturm, SeDuMi, uses the
self-dual embedding model for symmetric cone programming. For conventional
convex programming with inequality constraints, Andersen and Ye [1, 2] devel-
oped a different type of self-dual embedding model based on the simplified model
of Xu, Hung and Ye [15] for linear programming. In fact, the method of Andersen
and Ye is designed for nonlinear complementarity problems, thus more general.
However, it is not exactly a self-dual embedding model due to the simplifica-
tion made in Xu, Hung and Ye’s approach, [15]. As is well known, for linear
programming this simplification does not affect the iterates, but it will make a
difference for nonlinear problems. The codes of Sturm and Andersen are consid-
ered the state-of-the-art implementations of the interior point method for convex
programming.
In this paper we introduce in Section 3 a particular conic formulation for

inequality-constrained convex programming. In other words, we reformulate the
inequality constraints by a conic constraint. This involves two additional variables.
By standard conic duality we also obtain a dual form for the problem. By virtue
of this construction, the dual of the cone is completely characterized by the
conjugate of the constraint functions. An advantage of this dual form is that it is
completely symmetric with respect to the primal problem. Moreover, the barrier
functions for the so-constructed primal and dual cones are readily available. We
show that these natural (logarithmic) barrier functions for the primal and the dual
cones are simply conjugate to each other. This exhibits a beautiful symmetricity
of duality. After formulating the optimization problem in the conic form and
employing the self-dual embedding technique as developed in Section 2, we are
in the position to invoke the central path-following interior point method. In order
to stay within the polynomial-time complexity realm, we will need to rely on the
self-concordant barrier function theory developed by Nesterov and Nemirovski
in [9]. For that purpose, as an example, we prove in Section 4 that if all the
constraints in the original problem are convex quadratic functions, then the barrier
function for the self-dual embedded problem is self-concordant. Hence this class
of problems can be solved in O�

√
r log 1

�
� number of iterations, where r is the

number of constraints, and �>0 is the required precision. This suggests a way to
prove the same property for other classes of constraint functions. However, further
research is needed to yield more results in this respect. An obvious advantage of
the new approach, of course, is that it does not require an initial feasible solution
of the convex program to start with, which is a generic virtue of the self-dual
embedding method.
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Independently, Glineur [5] studied a similar homogenization idea for several
special convex programming problems, such as the lp-norm optimization prob-
lem, geometric programming, and separable convex programming. In particular,
these problems are formulated in [5] as convex conic programs as well, and the
corresponding dual cones are worked out. However, the objective of [5] and that
of the current paper are quite different. While [5] is mainly interested in the dual-
ity relations for the specially structured convex optimization problems, we aim at
a self-dual embedding scheme for general convex programming, so as to avoid
the difficulty of initialization.

2. Self-Dual Embedded Conic Optimization

The primal-dual self-dual embedding technique was first proposed by Ye, Todd
and Mizuno [17] for solving linear programming problems. The advantage of
the method is that the model allows to take any pre-described interior points as
initial feasible solutions for the embedded problem, and the embedded problem
is guaranteed to have an optimal solution, which can be approximated by using
any interior point algorithm. Moreover, by solving the embedded problem, one
either obtains an optimal solution for the original problem, or obtains a Farkas
type certificate to conclude that the original problem is unsolvable. This technique
was independently extended by Luo, Sturm and Zhang [8], De Klerk, Roos and
Terlaky [6], and Potra and Sheng [11] to solve semidefinite programming. In
fact, the extension of Luo, Sturm and Zhang [8] allowed for a more general conic
optimization framework. In this section we shall briefly introduce this method.
Consider the following conic optimization problem

minimize cTx (P)

subject to Ax=b

x∈�

where c∈�nb∈�m, A∈�m×n (assumed to have full row-rank), and �⊆�n is a
solid convex cone with its dual cone defined as

�∗=�s �xT s�0 for all x∈���

The problem (P) has an associated dual problem, called (D),

minimize bTy (D)

subject to ATy+s=c

s∈�∗�

The duality pair, (P) and (D), enjoys a nice symmetric relationship, similar as in
the case of linear programming where �=�∗=�n

+. For a detailed account on
the subject, one is referred to either [7] or [14].
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Take any x0∈ int �, s0∈ int �∗, and y0∈�m. Moreover, define

rp=b−Ax0 rd=s0−c+ATy0 and rg =1+cTx0−bTy0�

Consider the following embedded optimization model

minimize �� (SD)

subject to Ax−b�+rp�=0

−ATy+c�+rd�−s=0

bTy−cTx+rg�−�=0

−rT
p y−rT

d x−rg�=−�

x∈� ��0 s∈�∗ ��0

where �=1+�x0�T s0>1, and the decision variables are �yx��s��.
It is elementary to verify that (SD) is self-dual, i.e., its dual form coincides

with itself. Moreover, (SD) admits a trivial solution

�yx��s��=�y0x011s01�

which lies in the interior of the constraint cone

�m×�×�+×�×�∗×�+�

This implies that (SD) satisfies the Slater condition. Because (SD) is self-dual, so
its dual problem also satisfies the Slater condition. Hence, (SD) has a non-empty
and bounded optimal solution set; see e.g. Nesterov and Nemirovski [9]. Note
that for the case when � is the cone of positive semidefinite matrices, the above
self-dual embedding scheme is exactly what is proposed by De Klerk, Roos and
Terlaky [6]. The homogeneous self-dual embedding model of Potra and Sheng
[11] uses an adapted version of Xu, Hung and Ye’s model [15].
The following result is well known; see its analog in [17] for the linear

programming case.

PROPOSITION 2.1. The problem (SD) has a maximally complementary optimal
solution, denoted by �y∗x∗�∗�∗s∗�∗�, such that �∗=0 and �x∗�T s∗+�∗�∗=0.
Moreover, if �∗>0, then x∗/�∗ is an optimal solution for (P), and �y∗/�∗s∗/�∗�
is an optimal solution for (D). If �∗>0 then either cTx∗<0 or bTy∗>0; in the
former case (D) is infeasible, and in the latter case (P) is infeasible.

If �∗ and �∗ do not exhibit strict complementarity, namely �∗=�∗=0, then
in that case we can only conclude that (P) and (D) do not have complementary
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optimal solutions. In fact, more information can still be deduced, using the notion
of, e.g., weak infeasibility; for more details see [8].
A barrier (convex) function F�x� for � is defined to have the property that

F�x�<� for all x∈ int� and F�xk�→� as xk→x where x is on the boundary
of �. Moreover, it is called self-concordant (Section 2.3.1 of [9]) if it further
satisfies the property that

�� 3F�x� hhh"��2�� 2F�x� hh"�3/2 (1)

and

��F�x� h"��C�� 2F�x� hh"�1/2 (2)

for any x∈ int � and any direction h∈�n.
Furthermore, we call a barrier function F�x� to be $-logarithmically homo-

geneous if

F�tx�=F�x�−$ log t

for all x∈ int � and t>0. As a fundamental property for convex cones, Nesterov
and Nemirovski proved the following important theorem (Section 2.5 of [9]):

THEOREM 2.2. Any closed convex cone admits a self-concordant, logarithmi-
cally homogeneous barrier function.

The following straightforward but usefully properties of the $-logarithmically
homogeneous function can be found in Nesterov and Nemirovski [9]; see also
[10].

PROPOSITION 2.3. Suppose that F�x� is an $-logarithmically homogeneous
barrier function for �. Then the following identities hold where x∈ int� and
t>0:

�F�tx�= 1
t
�F�x�& (3)

� 2F�tx�= 1
t2

� 2F�x�& (4)

� 2F�x�x=−�F�x�& (5)

��F�x��Tx=−$� (6)

Related to the duality of convex cones, the conjugate of the convex function
f �x�, is defined as

f ∗�s�=sup��−s�Tx−f �x� �x∈domf �
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where domf stands for the domain of the function f . The above operation
is known as the Legendre-Fenchel transformation. The conjugate of several
popularly used functions are well studied. For instance, for f �x�= 1

2x
TQx+lT x

where Q0, we have f ∗�s�= 1
2�s+l�TQ−1�s+l�. If f �x� is strictly convex and

differentiable, then f ∗�s� is also strictly convex and differentiable. Moreover, it is
easy to see that for x∈ int domf and s∈ int domf ∗ the following three statements
are equivalent

s=−�f�x� (7)

x=−�f ∗�s� (8)

−xT s=f �x�+f ∗�s�� (9)

The famous bi-conjugate theorem asserts (see e.g. Rockafellar [13]) that
f ∗∗=clf . In particular, for the convex barrier function F�x�, we simply have
F ∗∗�x�=F�x�. In addition to that, Nesterov and Nemirovski [9] showed that if
F�x� is a self-concordant $-logarithmically homogeneous barrier function for �,
then it follows that F ∗�s� is a self-concordant $-logarithmically homogeneous
barrier function for �∗.
We consider the following barrier approach for solving (SD) with )>0 as the

barrier parameter

minimize )F�x�−)log�+��+)F ∗�s�−)log� (SD))

subject to Ax−b�+rp�=0

−ATy+c�+rd�−s=0

bTy−cTx+rg�−�=0

−rT
p y−rT

d x−rg�=−�

x∈� ��0 s∈�∗ ��0�

Due to the self-duality we derive the following KKT optimality condition for
(SD)), where the solution is denoted by �y�)�x�)���)���)�s�)���)��,

Ax�)�−b��)�+rp��)� = 0

−ATy�)�+c��)�+rd��)�−s�)� = 0

bTy�)�−cTx�)�+rg��)�−��)� = 0

−rT
p y�)�−rT

d x�)�−rg��)� = −�

−) 1
��)�

= −��)�

−) 1
��)�

= −��)�

)�F�x�)�� = −s�)�

)�F ∗�s�)�� = −x�)��
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By (7) and (8) we can simplify the above optimality condition into

Ax�)�−b��)�+rp��)� = 0

−ATy�)�+c��)�+rd��)�−s�)� = 0

bTy�)�−cTx�)�+rg��)�−��)� = 0

−rT
p y�)�−rT

d x�)�−rg��)� = −�

��)���)� = )

s�)� = −)�F�x�)���




(10)

The last equation in (10) can be equivalently replaced by

x�)�=−)�F ∗�s�)���

3. Connection with Convex Programming

We now consider a standard convex programming problem

minimize cTx (CP)

subject to Ax=b

fi�x��0 i=1���r

where fi�x� is smooth and convex, i=1���r .
For simplicity, let us start with the case where r=1. Let f �x�=f1�x�. Let the

decision variable now be

x̄ +=

p

q
x


∈�1×�1×�n

and the problem data as

c̄ +=

0
0
c


∈�1×�1×�n b̄ +=


1
0
b


∈�1×�1×�m (11)

and

Ā +=

1 0 0T

0 1 0T

0 0 A


∈��m+2�×�n+2�� (12)

Let

�=cl�x̄ �p>0q−pf�x/p��0�⊆�n+2 (13)



486 SHUZHONG ZHANG

which is a closed cone. The lemma below, which was used by Ye in [16], shows
that it is also convex. For completeness, we provide a proof here as well.

LEMMA 3.1. Suppose that f �x� is twice differentiable and convex. Then the
function −q+pf�x/p� is convex in �1

++×�1×�n.
Proof. We need only to show that pf�x/p� is convex in �1

++×�n. Simply
calculation shows that

� 2�pf �x/p��= 1
p

[
�x/p�T� 2f �x/p��x/p� −�x/p�T� 2f �x/p�

−� 2f �x/p��x/p� � 2f �x/p�

]
�

Let H =� 2f �x/p� and h=x/p. Then for any .̄T =�.0.
T �∈�n+1 we have

.̄T� 2�pf �x/p��.̄ = 1
p

[
.2
0h

THh−2.0.
THh+.TH.

]

�
1

p

(
.0�H 1/2h�−�H 1/2.�)2

�0�

Therefore, −q+pf�x/p� is convex in �1
++×�1×�n. �

An equivalent conic formulation for (CP) is given by

minimize c̄T x̄ (CCP)

subject to Āx̄= b̄

x̄∈��

Naturally, a 2-logarithmically homogeneous and convex barrier function for � is

F�x̄�=−logp−log�q−pf�x/p��� (14)

THEOREM 3.2. It holds that

�∗=cl


s̄=


u

v
s



∣∣∣∣∣∣v>0u−vf ∗�s/v��0




and

F ∗�s̄�=−logv−log�u−vf ∗�s/v��

which is a 2-logarithmically homogeneous barrier function for �∗.
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Proof. For any
[

u
v
s

]
with v>0 and u−vf ∗�s/v��0, and x̄=

[
p
q
x

]
∈� we have

pu+qv+xT s=pv u/v+q/p+�x/p�T �s/v�"

�pv u/v+q/p−f �x/p�−f ∗�s/v�"

=v�q−pf�x/p��+p�u−vf ∗�s/v��

�0�

Hence,
s̄=


u

v
s



∣∣∣∣∣∣v>0u−vf ∗�s/v��0


⊆�∗�

On the other hand, take any s̄=
[

u
v
s

]
∈ int �∗. Obviously v�0. This is because for

any fixed x̄∈� it follows that x̄+t
[
0
1
0

]
∈� for any t>0. Since int �∗ is open,

we conclude that v>0. Let x̂=−�f ∗�s/v�. Consider


 1

f �x̂�
x̂


∈��

By the equivalence between (8) and (9), we have f �x̂�+f ∗�s/v�=−x̂T �s/v�
and so

0� s̄T


 1

f �x̂�
x̂


=u−vf ∗�s/v��

This shows that

�∗=cl


s̄=


u

v
s



∣∣∣∣∣∣v>0u−vf ∗�s/v��0


�

To show that F ∗�s̄�=−logv−log�−u−vf ∗�s/v��, we observe that

�F�x̄�=

−1/p− −f �x/p�+�f�x/p�T �x/p�"/�q−pf�x/p��

−1/�q−pf�x/p��
�f �x/p�/�q−pf�x/p��




=

− q/p−2f �x/p�+�f�x/p�T �x/p�"/�q−pf�x/p��

−1/�q−pf�x/p��
�f �x/p�/�q−pf�x/p��


�
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Let s̄=
[

u
v
s

]
=−�F�x̄�. Hence

u =  q/p−2f �x/p�+�f�x/p�T �x/p�"/�q−pf�x/p��
v =1/�q−pf�x/p��

s/v =−�f�x/p��


 (15)

From the last equations, using (7), (8) and (9) we obtain x/p=−�f ∗�s/v�, and
f �x/p�+f ∗�s/v�=−�x/p�T �s/v�. Moreover, F�x̄� is 2-logarithmically homo-
geneous, implying that

x̄T s̄=up+vq+xT s=2�

Hence,

1=vq−vpf �x/p�=vq−pv�−�s/v�T �x/p�−f ∗�s/v��

=vq+sTx+pvf ∗�s/v�=2−up+pvf ∗�s/v�

and so

p=1/�u−vf ∗�s/v���

Using the first equation in (15) we have

u=v
[
q/p−2f �x/p�−�s/v�T �x/p�

]
=v q/p−f �x/p�+f ∗�s/v�"

=v
[
q/p+2f ∗�s/v�−�f ∗�s/v�T �s/v�

]

and so

q/p=u/v−2f ∗�s/v�+�f ∗�s/v�T �s/v��

This yields

�F ∗�s̄�=−x̄=−

p

q
x




=

 −1/�u−vf ∗�s/v��

 u/v−2f ∗�s/v�+�f ∗�s/v�T �s/v�"/�u−vf ∗�s/v��
�f ∗�s/v�/�u−vf ∗�s/v��


�

Consequently,

F ∗�s̄�=−logv−log�u−vf ∗�s/v��� �
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Now we consider the conic form self-dual embedding path following scheme
as stipulated by Equation (10) for (CCP), where the data of the problem, �Āb̄c̄�,
is given by (11) and (12), and the barrier function is given according to (14).
This results in the following system of equations

Āx̄�)�− b̄��)�+ r̄p��)� = 0

−ĀT ȳ�)�+ c̄��)�+ r̄d��)�− s̄�)� = 0

b̄T ȳ�)�− c̄T x̄�)�+ r̄g��)�−��)� = 0

−r̄ T
p ȳ�)�− r̄ T

d x̄�)�− r̄g��)� = −�

��)���)� = )

u�)� q�)�−p�)�f �x�)�/p�)��" = ) q�)�/p�)�−2f �x�)�/p�)��+
+�f�x�)�/p�)��T x�)�/p�)�

]
v�)� q�)�−p�)�f �x�)�/p�)��" = )

s�)� q�)�−p�)�f �x�)�/p�)��" = −)�f�x�)�/p�)���




(16)

We remark here that whenever the initial p and � are set to be 1, the first
component of r̄p will be zero. Hence p=� . This implies that these two normalizing
variables can be combined into one.
Next we consider the general formulation of (CP) where r�1. Similarly we

have its conic representation (CCP) with

�=
r⋂

i=1

�i

where

�i=cl�x̄ �p>0q−pfi�x/p��0�⊆�n+2 i=1���r�

The natural 2r-logarithmically homogeneous barrier function for � is

F�x̄�=−r logp−
r∑

i=1

log�q−pfi�x/p���

The dual cone of � is

�∗=cl��∗
1⊕···⊕�∗

r �

=cl




r∑
i=1

s̄i=
r∑

i=1


ui

vi

si



∣∣∣∣∣∣vi >0ui−vif

∗
i �si/vi��0i=1���r


�

Using Theorem 3.2, we know that the dual barrier function for �∗, which is the
conjugate function of F�x̄�, hence also 2r-logarithmically homogeneous, is given
as follows

F ∗�s̄1���s̄m�=−
r∑

i=1

 logvi+log�ui−vif
∗
i �si/vi��"�
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The central path for the embedded problem is:

Āx̄�)�− b̄��)�+ r̄p��)� = 0

−ĀT ȳ�)�+ c̄��)�+ r̄d��)�− s̄�)� = 0

b̄T ȳ�)�− c̄T x̄�)�+ r̄g��)�−��)� = 0

−r̄ T
p ȳ�)�− r̄ T

d x̄�)�− r̄g��)� = −�

s̄�)�−
r∑

i=1

s̄i�)� = 0

��)���)� = )

ui�)� q�)�−p�)�fi�x�)�/p�)��" = ) q�)�/p�)�−2fi�x�)�/p�)��+
+�fi�x�)�/p�)�T x�)�/p�)�"

vi�)� q�)�−p�)�fi�x�)�/p�)��" = )

si�)� q�)�−p�)�fi�x�)�/p�)��" = −)�fi�x�)�/p�)��i=1���r�




(17)

Observe that there is no need to explicitly involve the conjugate function f ∗
i

in the above primal-dual framework. However, if the conjugate functions
f ∗

i i=1���r , are indeed available, then one may consider applying the standard
path-following procedure for the following embedded barrier problem

minimize )F�x̄�−)log� +�� +)F ∗�s̄1���s̄m� −)log� (PF))

subject to Āx̄− b̄�+ r̄p�=0

−ĀT ȳ+ c̄�+ r̄d�−
m∑

i=1

s̄i=0

b̄T ȳ− c̄T x̄+ r̄g�−�=0

−r̄ T
p ȳ− r̄ T

d x̄− r̄g�=−��

According to Nesterov and Nemirovski’s self-concordant barrier theory, as long
as F�x̄� is self-concordant in the feasible set, applying the standard path following
method to the above problem �PF)� will lead to a polynomial-time algorithm.
Since the above formulation is based on the conic representation, it is therefore

easy to incorporate any other additional genuinely conic constraints. Consider a
hybrid type convex optimization

minimize cTx (H)

subject to Ax=b

fi�x��0 i=1���r

x∈�
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where � is a closed convex cone with a known self-concordant barrier G�x�.
Typically, � can be the direct product of second order cones, or the cone of
positive semidefinite matrices. Let the extended barrier function be

G�x̄� +=G�x��

The corresponding embedded model is

minimize )F�x̄�+)G�x̄�−)log�+��+)F ∗�s̄1���s̄r �+ (H))

+)G∗�s̄�−)log�

subject to Āx̄− b̄�+ r̄p�=0

−ĀT ȳ+ c̄T �+ r̄d�−
r∑

i=1

s̄i− s̄=0

b̄T ȳ− c̄T x̄+ r̄g�−�=0

−r̄ T
p ȳ− r̄ T

d x̄− r̄g�=−��

Again, whenever it is convenient, one may explicitly write out the correspond-
ing KKT system to invoke a Newton-based primal-dual central path-following
algorithm.
The extension to the hybrid model being more or less straightforward, in the

next section we will return to the pure convex programming formulation, and try
to identify some classes of convex programming problems such that the overall
barrier function is indeed self-concordant.

4. The Self-concordant Property

The definition of a self-concordant barrier requires two conditions, (1) and (2).
The constant on the right hand side of inequality (1) needs not to be 2 per se; any
positive constant can be scaled to 2, and it will only affect C by a constant factor,
where C is termed the parameter of the barrier by Nesterov and Nemirovski
in [9], or the complexity value of the barrier function as suggested by Renegar
in [12]. Just as the definition of ordinary convexity, self-concordancy is a line-
property, i.e., the definition of a self-concordant function can be restricted to any
line lying in the domain. To see this, let

d�t� +=F�x+th�� (18)

Then,

d�1��0�=�F�x� h"

d�2��0�=� 2F�x� hh"

d�3��0�=� 3F�x� hhh"�
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Therefore, F�x� is a self-concordant function satisfying (1) and (2) if and only
if it is a self-concordant function restricted to any line in its domain, i.e.

�d�3��0���2�d�2��0��3/2 and �d�1��0���C�d�2��0�1/2 (19)

for any given x in its domain and any given feasible direction h, where d�t� is
defined as in (18).
This observation allows us to prove the self-concordant property of a function

by proving this property for the function restricted to an arbitrary line in its
domain.
We note that for an $-logarithmically homogeneous function, the property (2)

is always satisfied. To see this we note that by (5) and (6) we have

��F�x� h"�=�hT�F�x��=�hT� 2F�x�x�
=� �� 2F�x��1/2h"T  �� 2F�x��1/2x"�
�
√

hT� 2F�x�h
√

xT� 2F�x�x

=√
$�� 2F�x� hh"�1/2

where we used the Cauchy-Schwarz inequality.
Therefore, as long as the barrier function is logarithmically homogeneous, the

key inequality to be satified is (1). Again, we do not have to insist on the constant
in (1) being 2. In fact, any universal constant in that inequality suffices, and will
lead to an overall complexity value of the barrier function to be in the order
of

√
$.

The function of interest in this paper is of the type

F�x̄�=−logp−log�q−pf�x/p���

We have shown that such a function is convex if f is convex. Now we wish
to see under what conditions this function is self-concordant. Obviously, F�x̄�
is 2-logarithmically homogeneous. So we need only to be concerned with the
property (1). For this purpose, let us consider the following function in t∈Re1

w�t�=−logg�t�

in the domain g�t�>0.
Simply calculation shows that

w�1��t�=−g�1��t�

g�t�

w�2��t�=−g�2��t�

g�t�
+ �g�1��t��2

g�t�2

w�3��t�=−g�3��t�

g�t�
+ 3g�2��t�g�1��t�

g�t�2
− 2�g�1��t��3

g�t�3
�
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Consequently,

�w�2��t��3=−�g�2��t��3

g�t�3
+ �g�1��t��6

g�t�6
+ 3�g�2��t��2g�1��t�2

g�t�4
− 3g2�t�g�1��t�4

g�t�5


(20)

and

�w�3��t��2= �g�3��t��2

g�t�2
+ 9�g�1��t��2�g�2��t��2

g�t�4
+ 4�g�1��t��6

g�t�6
−

−6g�1��t�g�2��t�g�3��t�

g�t�3
+ 4g�3��t��g�1��t��3

g�t�4
−

−12�g�1��t��4g�2��t�

g�t�5
� (21)

In order to satisfy (1) we wish to bound the quantity in (21) by the quantity
in (20).

LEMMA 4.1. If g�t� is a concave quadratic function, then w�t� is convex and
self-concordant.
Proof. In that case, g�2��t��0 and all the third order terms in (21) disappear,

leading to

�w�3��t��2= 9�g�1��t��2�g�2��t��2

g�t�4
+ 4�g�1��t��6

g�t�6
− 12�g�1��t��4g�2��t�

g�t�5
�

Notice the second and last term in the above expression are precisely four times
the second and the last term in (20) respectively. Further notice that the first term
in the above expression is three times the third term in (20). Overall, this yields,

�w�3��t��2�4�w�2��t��3

and so

�w3�t���2�w�2��t��3/2� (22)

The desired property is proven. �

Next we proceed to consider the barrier function F�x̄�. It turns out that this
function is also self-concordant, provided that f is convex quadratic.

THEOREM 4.2. Let f �x� be a convex quadratic function. Let x̄=
[

p
q
x

]
∈Ren+2�

Then F�x̄�=−logp−log�q−pf �x/p�� is a self-concordant function in the
domain p>0 and q−pf �x/p�>0.
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Proof. Consider an arbitrary line in the domain of F�x̄�.
If the p component remains constant along this line, then by Lemma 4.1, the

function F�x̄� is self-concordant on this line. In particular, (22) holds.
Let us now consider the case where p changes along the line. We may assume

that the line is parameterized by p, i.e.,

q�p�=a0+b0p

and

xi�p�=ai+bip for i=12���n

characterize the line, where p serves as the parameter.
Now, the function restricted to the line can be expressed as

F�x̄�p��=−log�q�p�/p−f �x�p�/p��−2logp

=−log�a0/p+b0−f �a1/p+b1���an/p+bn��−2logp�

Observe that the function

a0t+b0−f �a1t+b1���ant+bn�

is a one-dimensional concave quadratic function in t, as f is a convex quadratic
function. To simplify, let

a0t+b0−f �a1t+b1���ant+bn�=at2+2bt+c

with a�0. Hence,

F�x̄�p��=−log
(

a

p2
+ 2b

p
+c

)
−2logp

=−log�a+2bp+cp2��

If c�0, then by Lemma 4.1, it follows that F�x̄�p�� is self-concordant, and we
have the desired inequality (22). Let us consider the case where c>0. Due to
Lemma 3.1, F�x̄�p�� is a convex function in p for all p>0 and a+2bp+cp2>0.
Differentiation yields,

F 2�x̄�p��=2
�cp+b�2+b2−ac

�a+2bp+cp2�2
(23)

and

F �3��x̄�p��=−4
�cp+b�3+3�b2−ac��cp+b�

�a+2bp+cp2�3
� (24)
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Let 6=b2−ac�0. We derive that

�F 3�x̄�p����4
�cp+b�3

�a+2bp+cp2�3
+12

6�cp+b�
�a+2bp+cp2�3

�4�F �2��x̄�p��/2�3/2+12�F �2��x̄�p��/2�3/2

�5�7�F �2��x̄�p���3/2�

This shows that F�x̄� is self-concordant in all directions within its domain. �

This leads to the following result.

THEOREM 4.3. Consider quadratically constrained quadratic programming;
that is, problem (CP) where fi�·� are all convex quadratic, i=1���r . Then, the
conic barrier function for the conic formulation (CCP),

F�x̄�=−r logp−
r∑

i=1

log�q−pfi�x/p��

is self-concordant with a complexity value in the order of r .
A consequence of this result is that, if one applies a standard (short-step)

path-following algorithm for the conic formulation of (convex) quadratically
constrained quadratic program, based on (PF)), then the method terminates within
O�

√
r log 1

�
� number of iterations. This bound is independent of the dimension

of the decision variables. The just-mentioned complexity result for the (convex)
quadratically constrained quadratic programming problem can also be derived
by reformulating the convex quadratic constraints using the Second Order Cone
constraints. Hence, the complexity result itself is not new. However, the purpose
of Theorem 4.3 is not to give yet another proof for a known result, but to point
out the fact that the homogeneous self-dual embedding scheme does preserve
the self-concordancy property of the original constraint function(s), under certain
conditions. A natural and relevant question now is: what are the general conditions
under which this preservation is possible? More research efforts are needed to
completely resolve this important issue.
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